ScienceDaily: exotic physics phenomenon

I watch a site called ScienceDaily that reports on newly-published research.  Most days I can at least get the gist of the research.  This one has me completely baffled:

> > An exotic physical phenomenon, involving optical waves, synthetic magnetic fields, and time reversal, has been directly observed for the first time, following decades of attempts. The new finding could lead to realizations of what are known as topological phases, and eventually to advances toward fault-tolerant quantum computers, the researchers say. > > ...
But the observations only worked in Abelian systems, or those in which gauge fields are commutative -- that is, they take place the same way both forward and backward in time. ... Creating the Abelian version of the Aharonov-Bohm effects requires breaking the time-reversal symmetry, a challenging task in itself, Soljacic says. But to achieve the non-Abelian version of the effect requires breaking this time-reversal multiple times, and in different ways, making it an even greater challenge. To produce the effect, the researchers use photon polarization. Then, they produced two different kinds of time-reversal breaking. They used fiber optics to produce two types of gauge fields that affected the geometric phases of the optical waves, first by sending them through a crystal biased by powerful magnetic fields, and second by modulating them with time-varying electrical signals, both of which break the time-reversal symmetry. They were then able to produce interference patterns that revealed the differences in how the light was affected when sent through the fiber-optic system in opposite directions, clockwise or counterclockwise. Without the breaking of time-reversal invariance, the beams should have been identical, but instead, their interference patterns revealed specific sets of differences as predicted, demonstrating the details of the elusive effect.

Updated: